a2 United States Patent

Engebretsen et al.

US009203699B2

US 9,203,699 B2
Dec. 1, 2015

(10) Patent No.:
(45) Date of Patent:

(54) CONSTRUCTING AND VERIFYING SWITCH
FABRIC CABLING SCHEMES

(52) US.CL
CPC

HO4L 41/0853 (2013.01); HO4L 41/0893
(2013.01); HO4L 45/44 (2013.01)

(71) Applicant: E(E)EI?}]%?STSFII;PG&IS(E)RE) PIE (58) Field of Classification Search
. : CPC ittt HO4L 49/70
LTD., Singapore (SG) See application file for complete search history.
(72) Inventors: David R. Engebretsen, Cannon Falls, .
MN (US); Benjamin R. Garbers, (56) References Cited
Onalaska, WI (US); David L. U.S. PATENT DOCUMENTS
Hermsmeier, Oronoco, MN (US);
Stephen A. Knight, Rochester, MN 6.381,643 Bl 4/2002 Bartfai et al.
(US); Jaimeson Saley, Rochester, MN 7,619,981 B2 112009 Bomhoff et al.
(as) 2010/0054260 Al* 3/2010 Pandeyetal. 370/395.53
2010/0214949 Al* 82010 Smithetal.c.c...... 370/254
e 2011/0299822 Al 12/2011 Barry etal.
(73) Assignee: g(E)EI(J)}/I(z)EIBSI?SEII;IZ;IZIS(E)RE) PTE 2013/0044631 Al* 2/2013 Biswas etal. 370/254
; . 2013/0086405 Al 4/2013 Chou et al.
LTD., Singapore (SG) 2013/0298126 AL* 11/2013 Nakagawa 718/1
(*) Notice: Subject to any disclaimer, the term of this * cited by examiner
patent is extended or adjusted under 35)
U.S.C. 154(b) by 108 days. Primary Examiner — Kouroush Mohebbi
(74) Attorney, Agent, or Firm — Patterson + Sheridan, LL.P
(21) Appl. No.: 14/178,068
57 ABSTRACT
(22) Filed: Feb. 11, 2014 A distributed network switch includes multiple switch mod-
. .. ules connected by one or more physical cables. One switch
(65) Prior Publication Data module may determine which connector port of a remote
US 2015/0229524 Al Aug. 13, 2015 switch module is connected by physical cable based on infor-
mation received from the remote switch module, including
(51) Int.CL link identifiers, and further based on a physical topology
HO4L 1228 (2006.01) predetermined about the type of remote switch module.
HO4L 12/24 (2006.01)
HO4L 12/721 (2013.01) 13 Claims, 4 Drawing Sheets
300
~
SWITCH MODULE 250
[ErHPor oo |[ommos| /R
ETH Port 25 316 ETH Port
\ POSITION 1 POSITION 2 /
SUB-SWITCH 254 SUB-SWITCH 254
PCI POt —— LINKS 0 oo N LINKS 0 v N or PCl Port
302, 304 303, "
3104 v~|Connector1 cen ConnedorXF 310

r314

3124 V‘IConnectuM 3081

312
Connector Y

306y
123, " 306 308,,1 ‘\308,,
3085 306,,1 .
PCI Pott }

1586

ETH Port /

LINKS 0 e 306, | UNKSD .o —1{PCi Port
SUB-SWITCH @ SUB-SWITCH @ 122
POSITION 1 POSITION 2 \ 155
ETH Port
10MC REGS

26 318

ETH Port
158

SWITCH MODULE 251

ETH Port
155

US 9,203,699 B2

Sheet 1 of 4

Dec. 1, 2015

U.S. Patent

—— 90IA9Q . —
T L "Old oGl Jowayy
|

€21 Yod [0d w57 JUsW8g w57 JUsWBIg Ao7 UsWe[3

weaJjsumoq 0cl abpug ocl abpug ocl abpug
| | |
oo Jofer rovary — afeq — Jefeq — Jefeq
%l Lodsuei| 07l OWOI mmrto%cs I wm_‘toamce Il ocl Hodsue. |

0El Jofeq Buyoyms

—— IBRe7| |- Jeke —— 18fe — el |+ 1efe —— 18fe
scl Modsuel| scl Jodsuel| acl Modsue. | scl Jodsuel | acl uodsuel| scl uodsue. |
_ _ _ _ _ _
55+ HOd[Qd | | f7 JUSWS|3 =7 Juslie3 557 HOd[0d | | a7 WeWSI3 57 Juews|3
el weansdn 0cl abpug 0cl abpug (44 weadsdn 0cl abpug 0cl abpug

| | |
— obpug | | = Joydepy —— Je)depy —— ofipug | | =~ Joydepy — Jaydepy
Lil 1SCH I10d b JOMON L YIOMBN N_‘:mo_._ [9d b YOMON Skl WIOMJON
I
| vr1 eBpugenyip | |
€L JosinedAy TEL SUIYOBW [BNHIA
I
| 111 8uoe [eni | TEL SUoBW [enuiA TUT euoep [enuip
| 77 eumoewienpiA | | Tp] oulyoel [BnuIA | OlT Alowep
oLl fowspy
—— _’ 601 1ossaooid
I 0l Josssooy |
g0l Jemes GOl Jomeg

081

0ol

US 9,203,699 B2

Sheet 2 of 4

Dec. 1, 2015

U.S. Patent

00¢

o\ﬁ O\S 152 DO
T4 ZS¢
___ 4opsuuoy [T [T uoums a|Npon
09¢ 10d -ans UoUMS
fauIBY)a
~—0€EL
0zl | 0ZL |95z OWOI AR 0zl 0zl 0SC ®INPOI LoUMS
((((((
D& Dp s | ooy mux e /D Dp e
YOIMS | BINPOp o [Tuoums |- Youms —
WOl
-ans | yoms -qns -gng ﬁ s5¢
[
w —_ Joydepy __ Je)depy __ laydepy — Jeydepy
0ce L yiomeN kb yiomeN Skl yiomeN Skl yomeN
Z2le Janeg olLe Janeg
\ S0z sisseyd

U.S. Patent Dec. 1,2015 Sheet 3 of 4 US 9,203,699 B2
300 N
SWITCH MODULE 250
ETH Port — ETH Port
[ETH Port o |[oamos| TP
ETH Port 255 316 ETH Port
POSITION 1 POSITION 2
SUB-SWITCH 254 SUB-SWITCH 254
PCI Port NS —— N R P—— N PCI Port
e & & s & 8 n
302, _|—//302, 304 302, 504
/7/// 304, 302,75 ™!
310
1\/~|Connector1| “se Connector X 310,
314
~
312
3124 \"|Connector1 30]81 coe ConnectorY"V Y
306,
123 3064 308, 4 308,
3085 306, L
PCI Port ACE] — N | 306, [LINKSO .o N~ —PCl Port
SUB-SWITCH 254 SUB-SWITCH 254 122
POSITION 2
155 / POSITION 1 \ 155
ETH Port ETH Port
IOMC REGS
155 SWITCH MODULE 251 155

FIG. 3

U.S. Patent Dec. 1, 2015 Sheet 4 of 4 US 9,203,699 B2

402
DETECT PHYSICAL CONNECTION TO A REMOTE SWITCH |~
MODULE AT A CONNECTOR PORT OF A SWITCH MODULE

Y
404
ENABLE FLOW OF LINK-LAYER-ONLY (LLO) AND DISABLE | ~_

END-USER LAYER DATA

Y
406
TRANSMIT REQUEST FOR INFORMATION TO REMOTE |~

SWITCH MODULE VIA I-LINK

Y

RECEIVE INFORMATION FROM REMOTE SWITCH
MODULE VIA |-LINK

408
L~/

Y

RETRIEVE PHYSICAL TOPOLOGY OF THE REMOTE SWITCH 410
MODULE FROM A CATALOG OF KNOWN SWITCH
MODULES BASED ON THE RECEIVED INFORMATION

Y
DETERMINE OUTBOUND LINK IDENTIFIER BASED ON ,\/412

PORT IDENTIFIER OF A SOURCE SUB-SWITCH ELEMENT

Y
DETERMINE INBOUND LINK IDENTIFIER BASED ON /\/414

RECEIVED INFORMATION

Y

DETERMINE CONNECTOR PORT OF THE 416
REMOTE SWITCH MODULE BASED ON THE INBOUND
LINK IDENTIFIER AND BASED ON THE PHYSICAL
TOPOLOGY OF THE REMOTE SWITCH MODULE

FIG. 4

US 9,203,699 B2

1
CONSTRUCTING AND VERIFYING SWITCH
FABRIC CABLING SCHEMES

BACKGROUND

Embodiments of the present disclosure generally relate to
the field of computer networks.

Computer systems often use multiple computers that are
coupled together in acommon chassis. The computers may be
separate servers that are coupled by a common backbone
within the chassis. Each server is a pluggable board that
includes at least one processor, an on-board memory, and an
Input/Output (/O) interface. Further, the servers may be con-
nected to a switch to expand the capabilities of the servers.
For example, the switch may permit the servers to access
additional Ethernet networks or Peripheral Component Inter-
connect Express (PCle) slots as well as permit communica-
tion between servers in the same or different chassis. In addi-
tion, multiple switches may also be combined to create a
distributed network switch.

BRIEF SUMMARY

Embodiments of the present disclosure provide a method,
product, and system for performing an operation for veritying
cabling of a distributed network switch. The method includes
detecting that a physical connection has been made from a
first switch module to a second switch module. The physical
connection includes a plurality of links including a first link,
wherein the first link connects a first sub-switch element of a
first plurality of sub-switch elements within the first switch
module to a second sub-switch element of a second plurality
of sub-switch elements within the second switch module. The
method further includes determining a link identifier associ-
ated with the first link based on a first port identifier of the first
sub-switch element and on a second port identifier of the
second sub-switch element. The method includes retrieving,
from a memory of the second switch module, information
associated the second switch module and the second sub-
switch element. The method includes retrieving a physical
topology associated with the second switch module from a
catalog of switch modules based on the retrieved information,
and determining, by execution of a processing element in the
first switch module, a connector port of the second switch
module associated with the physical connection based on the
physical topology and on the link identifier.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

So that the manner in which the above recited aspects are
attained and can be understood in detail, a more particular
description of embodiments of the present disclosure, briefly
summarized above, may be had by reference to the appended
drawings.

It is to be noted, however, that the appended drawings
illustrate only typical embodiments of this present disclosure
and are therefore not to be considered limiting of its scope, for
the present disclosure may admit to other equally effective
embodiments.

FIG. 1 illustrates a system architecture that includes a
distributed network switch, according to one embodiment of
the present disclosure.

FIG. 2 illustrates a hardware representation of a system that
implements a distributed network switch, according to one
embodiment of the present disclosure.

40

45

50

2

FIG. 3 illustrates a hardware level diagram of the distrib-
uted network switch, according to one embodiment of the
present disclosure.

FIG. 4 is a flow diagram depicting a method for verifying
cabling of a distributed network switch, according to one
embodiment of the present disclosure.

To facilitate understanding, identical reference numerals
have been used, where possible, to designate identical ele-
ments that are common to the figures. It is contemplated that
elements disclosed in one embodiment may be beneficially
utilized on other embodiments without specific recitation.
The drawings referred to here should not be understood as
being drawn to scale unless specifically noted. Also, the draw-
ings are often simplified and details or components omitted
for clarity of presentation and explanation. The drawings and
discussion serve to explain principles discussed below, where
like designations denote like elements.

DETAILED DESCRIPTION

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

US 9,203,699 B2

3

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

In the following, reference is made to embodiments of the
present disclosure. However, it should be understood that the
disclosure is not limited to specific described embodiments.
Instead, any combination of the following features and ele-
ments, whether related to different embodiments or not, is
contemplated to implement and practice aspects of the
present disclosure. Furthermore, although embodiments of
the present disclosure may achieve advantages over other
possible solutions and/or over the prior art, whether or not a
particular advantage is achieved by a given embodiment is not
limiting of the present disclosure. Thus, the following
aspects, features, embodiments and advantages are merely
illustrative and are not considered elements or limitations of
the appended claims except where explicitly recited in a
claim(s). Likewise, reference to “the invention” shall not be
construed as a generalization of any inventive subject matter

10

15

20

25

30

35

40

45

50

55

60

65

4

disclosed herein and shall not be considered to be an element
or limitation of the appended claims except where explicitly
recited in a claim(s).

Referring now to FIG. 1, FIG. 1 illustrates a system archi-
tecture 100 that includes a distributed network switch 180,
according to one embodiment of the present disclosure. The
computer system 100 includes first and second servers 105,
106 connected to the distributed network switch 180. In one
embodiment, the first server 105 may include at least one
processor 109 coupled to a memory 110. The processor 109
may represent one or more processors (e.g., microprocessors)
or multi-core processors. The memory 110 may represent
random access memory (RAM) devices comprising the main
storage of the server 105, as well as supplemental levels of
memory, e.g., cache memories, non-volatile or backup
memories (e.g., programmable or flash memories), read-only
memories, and the like. In addition, the memory 110 may
include memory storage physically located in the server 105
or on another computing device coupled to the server 105.
The server 105 may operate under the control of an operating
system (not shown) and execute various computer software
applications, components, programs, objects, modules, and
data structures, such as virtual machines 111.

The server 105 may include network adapters 115, some-
times referred to as converged network adapters (CNAs). A
converged network adapter may include single root 1/O vir-
tualization (SR-IOV) adapters such as a Peripheral Compo-
nent Interconnect Express (PCle) adapter that supports Con-
verged Enhanced Ethernet (CEE). Another embodiment of
the system 100 may include a multi-root /O virtualization
(MR-IOV) adapter. The network adapters 115 may further be
used to implement a Fibre Channel over Ethernet (FCoE)
protocol, RDMA over Ethernet, Internet small computer sys-
tem interface (iSCSI), and the like. In general, a network
adapter 115 transfers data using both an Ethernet and PCI
based communication method and may be coupled to one or
more of the virtual machines 111. In particular, Ethernet may
be used as the protocol to the distributed network switch,
while PCI may be used as the protocol to transfer data to/from
main memory to the network adapter 115. Additionally, the
adapters may facilitate shared access between the virtual
machines 111. While the adapters 115 are shown as being
included within the server 105, in other embodiments, the
adapters may be physically distinct devices that are separate
from the server 105.

As shown in FIG. 1, the second server 106 may include a
processor 109 coupled to a memory 110 which includes one
ormore virtual machines 111 similar to those found in the first
server 105. The memory 110 of server 106 may include a
hypervisor 113 configured to manage data shared between
different virtual machines 111. The hypervisor 113 may
include a virtual bridge 114 that allows direct communication
between connected virtual machines 111 rather than requir-
ing the virtual machines 111 to use the bridge elements 120 or
switching layer 130 to transmit data to other virtual machines
111 communicatively coupled to the hypervisor 113.

Inone embodiment, each network adapter 115 may include
a converged adapter virtual bridge (not shown) that facilitates
data transfer between the adapters 115 by coordinating access
to the virtual machines 111. Each converged adapter virtual
bridge may recognize data flowing within its domain (i.e.,
addressable space). A recognized domain address may be
routed directly without transmitting the data outside of the
domain of the particular converged adapter virtual bridge.

Each network adapter 115 may include one or more Eth-
ernet ports that are coupled to one of the bridge elements 120,
also referred to herein as bridging elements. Additionally, to

US 9,203,699 B2

5

facilitate PCle communication, the server may have a PCI
Host Bridge 117. The PCI Host Bridge 117 may connectto an
upstream PCI port 122 on a switch element in the distributed
network switch 180. The data is then routed via the switching
layer 130 to the correct downstream PCI port 123 which may
be located on the same or different switch module as the
upstream PCI port 122. The data may then be forwarded to the
PCle device 152.

The distributed network switch 180 includes a plurality of
bridge elements 120 that may be located on a plurality of a
separate, though interconnected, hardware components. In
one embodiment, the bridge elements 120 may be configured
to forward data frames throughout the distributed network
switch 180. The bridge elements 120 forward the data frames
transmitted by the network adapter 115 to the switching layer
130. The bridge elements 120 may include a lookup table that
stores address data used to forward the received data frames.
For example, the bridge elements 120 may compare address
data associated with a received data frame to the address data
stored within the lookup table. Thus, the network adapters
115 do not need to know the network topology of the distrib-
uted network switch 180. From the perspective of the network
adapters 115, the distributed network switch 180 acts like one
single switch even though the distributed network switch 180
may be composed of multiple switches that are physically
located on different components, such as on different chassis
or racks. Distributing the operations of the network switch
180 into multiple bridge elements 120 provides redundancy
in case of failure.

Each of the bridge elements 120 may be connected to one
or more transport layer modules 125 that translate received
data frames to the protocol used by the switching layer 130.
For example, the transport layer modules 125 may translate
data received using either an Ethernet or PCI communication
method to a generic data type (i.e., a cell) that is transmitted
via the switching layer 130 (i.e., a cell fabric). Thus, the
switch modules comprising the distributed network switch
180 are compatible with at least two different communication
protocols—e.g., the Ethernet and PCle communication stan-
dards. That is, at least one switch module has the necessary
logic to transfer different types of data on the same switching
layer 130.

In one embodiment, the switching layer 130 may comprise
a local rack interconnect (LRI) which connects bridge ele-
ments 120 located within the same chassis and rack, as well as
links that connect to bridge elements 120 in other chassis and
racks. After routing the cells, the switching layer 130 may
communicate with transport layer modules 126 that translate
the cells back to data frames that correspond to their respec-
tive communication protocols. A portion of the bridge ele-
ments 120 may facilitate communication with an Ethernet
network 155 which provides access to a LAN or WAN (e.g.,
the Internet). Moreover, PCI data may be routed to a down-
stream PCI port 123 that connects to a PCle device 152. The
PCle device 152 may be a passive backplane interconnect, as
an expansion card interface for add-in boards, or common
storage that can be accessed by any of the servers connected
to the distributed network switch 180.

An Input/Output Management Controller (IOMC) 140
(i.e., a special purpose processor) is coupled to at least one
bridge element 120 which provides the IOMC 140 with
access to the switching layer 130. One function of the IOMC
140 may be to receive commands from an administrator to
configure the different hardware elements of the distributed
network switch 180. In one embodiment, these commands
may be received from a separate switching network from the
switching layer 130. Although one IOMC 140 is shown, the

10

15

20

25

30

35

40

45

50

55

60

65

6

system 100 may include a plurality of IOMCs 140. In one
embodiment, IOMCs 140 may be arranged in a hierarchy
such that one IOMC 140 is chosen as a master while the others
are delegated as members. In another embodiment, the
IOMC:s 140 may be arranged in a peer-to-peer layout where
the IOMCs 140 collaborate to administer and manage the
elements of the distributed network switch 180.

FIG. 2 illustrates a hardware representation of a system 200
that implements a distributed network switch 180, according
to one embodiment. Server 210 and 212 may be physically
located in the same chassis 205; however, the chassis 205 may
include any number of servers. The chassis 205 also includes
a plurality of switch modules 250, 251 that include one or
more sub-switches 254. In one embodiment, the switch mod-
ules 250, 251, 252, sometimes referred to as a chassis inter-
connect elements or CIE, are hardware components (e.g.,
PCB boards, FPGA boards, system on a chip, etc.) that pro-
vide physical support and connectivity between the network
adapters 115 and the bridge elements 120. In general, the
switch modules 250, 251, 252 include hardware that connects
different chassis 205, 207 and servers 210, 212, 214 in the
system 200.

The switch modules 250, 251, 252 (i.e., a chassis intercon-
nect element) include one or more sub-switches 254 and an
IOMC 255, 256, 257. The sub-switches 254 may include a
logical or physical grouping of bridge elements 120. Each
bridge element 120 may be a distributed Virtual Ethernet
bridge (dVEB) configured to forward data frames throughout
the distributed network switch 180. Each bridge element 120
may be physically connected to the servers 210, 212. For
example, a bridge element 120 may route data sent using
either Ethernet or PCI communication protocols to other
bridge elements 120 attached to the switching layer 130.
However, in one embodiment, the bridge element 120 may
not be needed to provide connectivity from the network
adapter 115 to the switching layer 130 for PCI or PCle com-
munications.

Each switch module 250, 251, 252 includes an IOMC 255,
256,257 for managing and configuring the different hardware
resources in the system 200. In one embodiment, the respec-
tive IOMC for each switch module 250, 251, 252 may be
responsible for configuring the hardware resources on the
particular switch module. However, because the switch mod-
ules are interconnected using the switching layer 130, an
IOMC on one switch module may manage hardware
resources on a different switch module.

The dotted line in chassis 205 defines the midplane 220
between the servers 210, 212 and the switch modules 250,
251. That is, the midplane 220 includes the data paths that
transmit data between the network adapters 115 and the sub-
switches 254.

Each bridge element 120 connects to the switching layer
130. In addition, a bridging element 120 may also connect to
anetwork adapter 115 or an uplink. As used herein, an uplink
port ofa bridging element 120 provides a service that expands
the connectivity or capabilities of the system 200. As shown
in chassis 207, one bridging element 120 includes a connec-
tion to an Ethernet or PCI connector 260. For Ethernet com-
munication, the connector 260 may provide the system 200
with access to a LAN or WAN (e.g., the Internet). Alterna-
tively, the port connector 260 may connect the system to a
PCle expansion slot—e.g., PCle device 152. The device 152
may be additional storage or memory which each server 210,
212, 214 may access via the switching layer 130. Advanta-
geously, the system 200 provides access to a switching layer
130 that has network devices that are compatible with at least
two different communication methods.

US 9,203,699 B2

7

As shown, each server 210, 212, 214 may have a plurality
of network adapters 115. This provides redundancy if one of
these adapters 115 fails. Additionally, each adapter 115 may
be attached via the midplane 220 to a different switch module
250, 251, 252. As illustrated, one adapter of server 210 is
communicatively coupled to a bridge element 120 located in
switch module 250 while the other adapter is connected to a
bridge element 120 in switch module 251. If one of the switch
modules 250, 251 fails, the server 210 is still able to access the
switching layer 130 via the other switching module. The
failed switch module may then be replaced (e.g., hot-
swapped) which causes the IOMCs 255, 256, 257 and bridg-
ing elements 120 to update the routing tables and lookup
tables to include the hardware elements on the new switching
module.

The bridge elements 120 are operatively connected to mul-
tiple bridge elements 120. In one embodiment, the bridge
elements 120 are connected to each other using the switching
layer 130 (e.g., via a mesh connection schema). As such, no
matter the bridge element 120 used, a data packet can be
routed to another bridge element 120 located on any other
switch module. In some embodiments, this may be accom-
plished by directly connecting each bridge element 120, i.e.,
each bridge element 120 having a dedicated direct data path to
every other bridge element 120. Alternatively, in some
embodiments, the switching layer 130 may use a spine-leaf
architecture wherein each bridge element 120 (i.e., a leaf
node) is attached to at least one spine node. The spine nodes
route data packets received from the bridge elements 120 to
the correct spine node, which then forward the data packet to
the correct bridge element 120. In one embodiment, the
bridge elements 120 may forward data frames to other bridge
elements 120 in the same sub-switch 254, in different sub-
switches 254 of the same switch module (e.g., switch module
250), or even in different switch modules 250, 251, 252 via
switching layer 130.

Verifying Switch Fabric Cabling

In many cases, a data center may include multiple racks of
servers (e.g., servers 210, 212) and I/O devices that are inter-
connected with switch hardware, such as the switch modules
250, 251, 252 of the distributed network switch 180. To
expand the capability, as well as the performance, of the
distributed network switch 180, multiple switch modules can
be attached to each other via physical cabling and other physi-
cal connections. The physical cabling that interconnects these
switch modules can involve hundreds of cabling possibilities.
The physical configuration of the distributed network switch
180, sometimes referred to as the switch fabric, and the
sequence of how the distributed network switch is con-
structed can have an impact on the performance and resil-
iency of the overall interconnected system. For instance,
redundant paths within the distributed network switch can
allow for dynamic failover capabilities (so that disruption of
user services can be reduced when single points of failure
occur) and increase the overall bandwidth between the
devices connected to the distributed network switch. How-
ever, in some cases, concurrent maintenance of the distributed
network switch is allowed and, if not performed correctly, can
cause a failure or expose the system to failure, for example, by
inadvertently partitioning the switch. Therefore, the ability to
interactively detect and describe the physical connectivity
characteristics of the distributed network switch 180 may be
desirable and enables the ability to produce interactive
cabling assistance utilities for facilitating complex switch
configurations.

15

20

25

40

45

8

Accordingly, embodiments of the present disclosure pro-
vides switch module configured to detect when a switch fab-
ric cable is physically connected to the switch module, and
fetch detailed information about what is attached on the other
end of the switch fabric cable (e.g., another switch module)
before normal user traffic is allowed to flow through the cable.
Based on the fetched information, the switch module (e.g.,
via execution of firmware) can be configured to decode the
physical characteristics of adjacent switch modules and may
then pass this information to higher-level functions for a
multitude of purposes. For example, the switch module may
provide the information to cable assistance utility software
that generates step-by-step instructions on how to cable a
desired configuration of the distributed network switch with
immediate verification of cable connections. In another
example, the information from the switch module may be
used to warn users of bad cabling actions during concurrent
maintenance actions of the distributed network switch. In yet
another example, the information from the switch module
may be used to generate suggestions as to exact steps (e.g.,
cabling steps) that should be taken to enhance overall perfor-
mance of the system. As such, embodiments of the present
disclosure include both the hardware features and firmware
constructs configured to make such information available via
the cable, and enable the production of higher-level utility
software for constructing and maintaining the distributed net-
work switch.

FIG. 3 illustrates a hardware level diagram of the distrib-
uted network switch 180, according to one embodiment of the
present disclosure. Each switch module 250, 251 includes a
processing element (e.g., IOMC 255) that may be coupled to
one or more sub-switches 254, also referred to as sub-switch
elements or switch elements, within the switch module. In
some embodiments, the IOMC 255 may include a direct
connection to the sub-switches within the switch module to
allow the IOMC (e.g., via firmware) to manage the function of
the sub-switches.

In one or more embodiments, the distributed network
switch 180 comprises a plurality of physical cabling, referred
to herein as chassis links 314 or “c-links”, that interconnect
one or more switch modules, and a plurality of individual
physical links, referred to herein as “i-links,” that form con-
nections and routes through the distributed network switch.
Each sub-switch 254 in a switch module may be connected to
aplurality of i-links. In the embodiment shown in FIG. 3, the
first sub-switch 254 is connected to a plurality of i-links 302
which are identified by corresponding port identifiers 0 to N
(e.g., 302, to 302,). Similarly, the second sub-switch is con-
nected to a second plurality of i-links 304, to 304, the third
sub-switch of the switch module 251 is connected a third
plurality of'i-links 306, to 306,,, and the fourth sub-switch is
connected to a plurality of i-links 308, to 308,. The switch
modules may be interconnected by c-links 314, which may
comprise a bundle of multiple i-links. In one implementation,
a c-link 314 may comprise a bundle of sixteen i-links.

In one embodiment, each switch module includes a plural-
ity of connector ports 310, 312 configured to be removably
coupled to one or more c-links 314. In the embodiment
shown, the first switch module 250 having a first plurality of
connector ports 310, to 310, and the second switch module
251 having a second plurality of connector ports 312, to 312,
are connected together by a c-link 314 connecting the con-
nector port 310, of the first switch module 250 to the connec-
tor port 312, of the second switch module 251. Each sub-
switch 254 of a switch module may be connected to one or
more connector ports via the plurality of i-links within the
switch module. Each connector port 310, 312 may be coupled

US 9,203,699 B2

9

to (e.g., physically wired to) one or more i-links connected to
the sub-switches, thereby providing connectivity to sub-
switches 254 within each switch module. In some embodi-
ments, a sub-switch 254 in a switch module may be connected
to every connector port of that switch module by one or more
i-links. In some embodiments, each i-link that comes out of a
sub-switch 254 is uniquely wired to a connector, such that,
given information identifying the i-link and the sub-switch,
the connector wired to those elements may be inferred. For
example, in the embodiment shown in FIG. 3, the first sub-
switch 254 of the switch module 250 is connected to the first
connector port 310, by i-links 302, and 302, and a second
connector port 310, by i-links 302,,, and 302,. As shown,
the first sub-switch 254 within the switch module 250 is
communicatively coupled to the second sub-switch 254
within the switch module 251 via i-links 302, 302, connector
port 310, c-link 314, connector port 312, and i-links 308, ;,
308,

In the embodiment shown, switch modules 250, 251
include a first sub-switch 254 designated at a first position
(identified as “Position 1) and a second sub-switch 254
designated at a second position (identified as “Position 27). In
one or more embodiments, each switch module may have a
different physical characteristic, which refers to the physical
configuration of a certain number of sub-switches (e.g., 4
sub-switches per switch module) arranged in a particular
configuration (e.g., linear or array configuration) in particular
designated positions within the switch module. The various
physical characteristics of switch modules may be predeter-
mined (e.g., obtained from internal sources or third-party
device manufacturers) and stored in a catalog 316 of device
profiles for use in the techniques described herein. Device
profiles within catalog 316 specify pre-determined knowl-
edge of which i-link port identifiers associated with certain
sub-switches are wired to connectors ports within a particular
switch module.

For example, a device profile for the switch module 251
may specify that this particular model of switch module
includes a sub-switch in a position identified as “Position 17,
which is connected to a connector port having an identifier
“Connector 1” (e.g., 312,) by i-links having port identifiers
“0” and “1” (e.g., 306, 306,), and is also connected to a
connector port having an identifier “ConnectorY” (e.g., 312;)
by i-links having port identifiers “N-1"and “N” (e.g., 306, ,,
306,,). The device profile of the switch module 251 further
specifies that the switch module include a sub-switch in Posi-
tion 2, which is connected to the connector port having the
identifier “Connector 1” by i-links having port identifiers “0”
and “1” (e.g., 308,, 308,), and is also connected to the con-
nector port having an identifier “Connector Y” by i-links
having port identifiers “N-1" and “N” (e.g., 308,.,, 308,,).

In one embodiment, device profiles within catalog 316 are
associated with a particular model of a switch module, which
may be identified by an identifier associated with the switch
module, including a model number, a version number, a serial
number, and serial number format. In some embodiments, the
catalog 316 may be stored in a memory (not shown) acces-
sible to IOMC 255, or in other embodiments, may be embod-
ied as part of executable program logic (e.g., data structure
within firmware) executable by the IOMC 255. It should be
recognized that the device profiles within catalog 316 are not
limited to switch modules and may include other networking
components configured to be coupled as part of (e.g., routers,
switches) or coupled to (e.g., servers) the distributed network
switch 180.

FIG. 4 is a flow diagram depicting a method 400 for veri-
fying cabling of a distributed network switch, according to

10

15

20

25

30

35

40

45

50

55

60

65

10

one embodiment of the present disclosure. As shown, the
method 400 begins at block 402, where a first switch module
250 (e.g., by operation of the IOMC 255) detects that a
physical connection has been made to a second “remote”
switch module at a connector port of the switch module 250.
Asused herein, a “remote” switch module refers to the switch
module on the other end of the physical connection with a
“source” switch module, i.e., “remote” from the perspective
of'the source switch module. In one embodiment, the physical
connection comprises a coupling of a c-link 314 coupled
between the switch modules, at respective connector ports on
the switch modules. As a c-link may contain a plurality of
i-links, the physical connection forms one or more i-link
connections between sub-switches within each switch mod-
ule. For simplicity of explanation, the method 400 is
described in relation to a single i-link connection (e.g., 302,
and 308, ,) between a first sub-switch 254 on the switch
module 250 and a second sub-switch 254 on the switch mod-
ule 251, but it should be recognized that the method may be
applied to additional i-link connections made as a result of the
physical connection.

At block 404, the switch module 250 enables flow of link-
layer-only (LLO) data and disables flow of end-user layer
data over the physical connection. In some embodiments,
end-user data may only be enabled to flow through the dis-
tributed network switch via firmware action to the sub-
switches 254 through a controlling IOMC 255. The IOMC
255 may modify the i-link to disable flow of the end-user
layer data and enter a LLO state. When an i-link is inan LL.O
state, certain information may be made available to the firm-
ware about the i-link, including state information (e.g., LLO
traffic, active link, link disconnect, etc.), the remote switch
module type, and i-link identifier information. The i-links
may remain in a Link Level Only state until discovery and
appropriate initialization has been performed. In one embodi-
ment, packets referred to as Directed Route Load Store
(DRLS) may be transmitted across predetermined i-links to
move information between the switch modules, sub-
switches, and IOMCs at the time an i-link first becomes
connected to another switch module. As described below, the
DRLS may be manipulated via a PCle interface to each sub-
switch element 254.

Atblock 406, the switch module 250 transmits a request for
information to the switch module through an i-link (e.g.,
302,) contained in the c-link 314. In some embodiments,
responsive to detecting that a physical connection has been
made, the switch module 250 may perform a link initializa-
tion process that establishes the link between a sub-switch
254 in the switch module 250 and a sub-switch 254 in the
remote switch module 250. In addition to configuration and
negotiation of settings (e.g., link speed, etc.), the link initial-
ization may include an exchange of identifiers associated
with each sub-switch. As such, the switch module 250 may
receive from the remote switch module an i-link port identi-
fier (e.g., port “N”) of the remote sub-switch 254, and a
position identifier (e.g., Position “2”) of a sub-switch 254
within the switch module that is connected to the i-link.

In one embodiment, the distributed network switch 180
may use a packet-based delivery mechanism to direct the
actions of individual switch modules within the distributed
network switch 180. A controller may transmit a management
packet to a particular switch module within the distributed
network switch 180, which contains a set of load/store opera-
tions which, when executed, are configured to configure the
links of the switch module (e.g., in block 406).

According to one or more embodiments, the distributed
network switch 180 may also use the packet-based delivery

US 9,203,699 B2

11

mechanism to get data from one component to another, such
as switch module information from a switch module to a
requesting IOMC 255, although other mechanisms for shar-
ing information between switch modules may be used. In one
embodiment, one switch module 250 may be configured to
manipulate and/or read registers within another switch mod-
ule using a management packet sent between the switch mod-
ules.

In some embodiments, the payload of the management
packet, which is sometimes referred to as a Directed Route
Load/Store (DRLS) packet, includes alist of commands (e.g.,
read or write operations on particular registers) and/or other
payload data. In some embodiments, the payload of the man-
agement packet includes a set of defined Load/Store, And/Or
and Semaphore operations which are to be executed by the
remote switch module. In one implementation, the manage-
ment packet may be 256 bytes in payload length.

In one embodiment, the management packet uses directed
routing to traverse across un-initialized switch modules, i.e.,
switch modules that do not yet have a link initialized and
established between the switch modules. For example, a con-
troller (e.g., IOMC 255 of the switch module 250) could
retrieve path information specifying a route from the control-
ler through the distributed network switch to the remote
switch module 251. The controller could then create a packet
that includes at least a portion of the path information. For
example, the packet could include a list of link identifiers
corresponding to a set of predetermined i-links that are used
to transmit the packet from the controller to the remote sub-
switch 254. As an example, the created packet could contain
the port identifiers “5, 2, 3”, indicating that the controller will
transmit the packet to a first sub-switch 254 using the con-
troller’s i-link with link identifier ““5”, the first sub-switch will
transmit the packet to a second sub-switch using the first
switch module’s i-link with link identifer “2”, and the second
switch module will transmit the packet to the remote sub-
switch 254 within the remote switch module 254 using the
second sub-switch module’s i-link with link identifier “3”. In
one embodiment, the created packet may not contain a link
identifier associated with the path between the controller and
the first sub-switch 254. For example, the controller could be
configured to insert the packet into a buffer within the first
sub-switch 254 using PCle communications, the buffer asso-
ciated with a directed route load store (DRLS) component,
described later.

The created packet is then transmitted to another switch
module within the distributed switch. Here, the packet could
be transmitted using a link on the controller unit that is deter-
mined based on the retrieved path information. For example,
the path information could specify that the packet should be
transmitted using the controller’s link having link ID “5”. The
packet may go through any number of intermediary switch
modules (not shown) before ultimately reaching the remote
switch module.

In one implementation, each switch module may include a
DRLS component having a respective execution buffer. The
execution buffer refers to some area of memory on a switch
module (or accessible by the switch module) that is config-
ured to store one or more load/store operations for execution.
For example, the execution buffer could be an array object on
the switch module and logic on the switch module could be
configured to monitor the array to determine when load/store
operations are copied into the array for execution. In one
embodiment, the DRLS component may be configured to
detect when operations are written to their respective execu-
tion buffer (e.g., via PCle communications), and, upon
detecting the execution buffer contains load/store operations,

10

15

20

25

30

40

45

50

55

60

65

12

execute the contents of the respective execution buffer (e.g.,
in an order based on the order the load/store operations are
stored in the array). In some embodiments, the DRLS com-
ponent executes commands found in the execution buffer,
including read and/or write commands on the registers (e.g.,
registers 318). The DRLS component may be further config-
ured to generate a management packet containing path infor-
mation to a destination switch module and a set of load/store
operations for execution on the destination switch module.
The DRLS component may be configured to generate an
acknowledgement message, as described later. As such, the
switch module may use the DRLS mechanism to perform link
initialization and retrieve information associated with the
remote switch module.

Inone embodiment, the IOMC 255 generates and transmits
a management packet requesting a read (“load”) operation
that returns information associated with the i-link. The
remote switch module, upon receiving the packet, copies the
set of load/store operations within the packet into the execu-
tion buffer on the remote switch module. The remote control
module of the remote switch module 251 processes the man-
agement packet by executing (e.g., by operation of the IOMC
256) cach of the commands contained within the packet. The
management packet may have a payload containing a list of
read commands that cause the remote switch module 251 to
retrieve data from one or more registers 318 containing data
that describes the remote switch module 251. The registers
318 may comprise a set of pre-determined register locations
initialized by the remote switch module (e.g., at startup) to
contain the information describing that switch module. The
information describing a switch module may include a switch
module type or model identifier, a version number, a serial
number, a fabric identifier associated with the switch module
(e.g., fabric World Wide Name), and other metadata associ-
ated with the switch module.

Once the load/store operations within the packet have been
executed, the remote switch module 251 transmits an
acknowledgement message back to the switch module 250
from which the management packet was received. In one
embodiment, the payload of the acknowledgement message
contains the requested information, e.g., link identifiers of the
remote switch module. In embodiments, where the packet
itself is transmitted back to the switch module 250 as the
acknowledgement message, the remote switch module 251
overlays the requested information into the packet itself and
transmits the resultant the packet back to the switch module
250.

At block 408, the switch module 250 receives information
from the remote switch module 251 through the i-link con-
tained in the c-link 314. In some embodiments, the switch
module 250 (e.g., by operation of the IOMC 255) receives and
processes the acknowledgement packet to retrieve informa-
tion associated with the i-link and with the remote switch
module from payload portions of the packet.

At block 410, the switch module 250 retrieves a physical
topology of the remote switch module 251 from the catalog
316 of known switch modules based on the received infor-
mation. In some embodiments, the switch module 250 per-
forms a lookup in the catalog 316 to retrieve a physical topol-
ogy that specifies how the remote switch module is wired to
its connector ports. For example, the physical topology asso-
ciated with the remote switch module specifies the second
port identifier for the second sub-switch element is wired to
the connector port (e.g., connector 312;).

At block 412, the switch module 250 determines an out-
bound link identifier based on the link identifier of a source
switch element (e.g., sub-switch 254). In one embodiment,

US 9,203,699 B2

13

from the perspective of a sub-switch 254, each i-link has a
unique link identifier associated with the i-link for outbound
traffic and a different (possibly non-unique) link identifier
associated with the i-link for inbound traffic. In one embodi-
ment, the outbound link identifier is determined based on the
source sub-switch 254, and may be set to the i-link port
identifier of the source sub-switch 254 (e.g., i-link port “0”).

At block 414, the switch module 250 determines an
inbound link identifier based on the received information. In
some embodiments, the inbound link identifier is set to the
i-link port identifier of the remote sub-switch given by the
remote sub-switch 254. In other words, the inbound link
identifier for a sub-switch 254 is the outbound link identifier
of the connected remote sub-switch 254.

It should be recognized that, because multiple remote sub-
switches may be connected to the same source sub-switch, the
inbound identifier may not be unique. For example, as shown
in FIG. 3, the i-link 302, of the first sub-switch 254 within the
first switch module 250 may have an outbound link identifier
of “0.” I-link 302, is physically wired to connector port 310,
which connects to connector port 312 on the switch module
251 by the c-link 314 (which contains i-links within the
c-link). As shown, the i-link coming out of the connector port
312, onthe switch module 251 represents the same i-link, and
is connected to the i-link 308, of the sub-switch 254 at Posi-
tion 2. As such, in this example, the outbound link identifier
associated with i-link 302, of the first sub-switch 254 within
the first switch module 250 is “0” and the inbound link iden-
tifier associated with the i-link 302, is “N,” when the c-link
314 is coupled as shown.

If'the c-link 314 was disconnected from the connector port
312, onthe second switch module 251 and was re-attached to
a different connector port 312 of the second switch module
251, the outbound link identifier associated with i-link 302,
would remain unchanged, but the inbound link identifier
associated with the i-link 302, may change, depending on the
physical configuration of the remote switch module 251. Ata
minimum, the inbound link identifier associated with the
i-link 302, would no longer be “N” from the second sub-
switch at Position 2. Ifthe inbound link identifier does happen
to have the value “N,” it may be inferred that the link identifier
is associated with another sub-switch within the switch mod-
ule 251. For example, if the c-link 314 was disconnected from
the connector port 312, and connected to the first connector
port 312, ofthe second switch module 251, the outbound link
identifier associated with i-link 302, would still be “0,” and
the inbound link identifier associated with the i-link 302,
changes to the port identifier “0” associated with the i-link
308, coupling the connector 312, to the sub-switch at position

According to one or more embodiments, the switch module
250 (e.g., by execution of firmware on IOMC 255) may
decode the connector numbers of the remote switch module
to which the switch module 250 is connected based on knowl-
edge obtained from the catalog 316 that specifies the particu-
lar physical characteristics of the model of the remote switch
module, such as knowledge of how the different i-link iden-
tifiers for different sub-switches are wired to connectors ports
within the particular switch module.

Referring back to FIG. 4, at block 416, the switch module
250 determines the connector port of the remote switch mod-
ule based on at least the inbound link identifier, and further
based on the physical topology of the remote switch module
251. In some embodiments, the switch module 250 deter-
mines the remote c-link connector port based on the inbound
link identifier, the remote sub-switch 254 position, and the
model/version of the remote switch module 251. In one

10

15

20

25

30

40

45

50

55

60

14

embodiment, the switch module 250 determines a connector
port identifier based on a comparison between the link iden-
tifiers and the known physical topology, where an inbound
portion of the link identifier matches a port identifier con-
nected to that connector port on the remote switch module, as
specified by the physical topology. For example, in the
embodiment shown in FIG. 3, the switch module 250 con-
cludes that the c-link 314 is connected to connector port “Y”
(e.g., 312;) because the established i-link to the remote sub-
switch designated at Position 2 has an inbound link identifier
of “N™, and the only connector wired to that i-link port N of
the remote sub-switch is connector “Y”, as known based on
the physical topology of the remote switch module. In some
embodiments, the switch module 250 may enable flow of
end-user data through the c-link and resume normal operation
of the switch modules for forwarding traffic through the dis-
tributed network switch 180.

Accordingly, embodiments described herein provide a
mechanism for verifying cabling between switch modules in
a distributed network switch. Embodiments of the present
disclosure enable physical cabling to be verified when a
switch module is inserted into or removed from the distrib-
uted network switch, all while the distributed network switch
may be in operation. Embodiments of the present disclosure
uses information transported between adjacent switch units
before a fabric switch unit cable is allowed to transport nor-
mal user data and knowledge of how the switch fabric con-
nectors are constructed (i.e., wired). From the information
gathered, the switch unit firmware can decode the physical
characteristics of adjacent switch units and can then pass this
information to higher level functions for a multitude of pur-
poses. For example, one embodiment, based on the deter-
mined connector port, the switch module 250 may pass the
determined connector port to higher-level software, such as a
cabling utility, which is configured to generate a graphical
view depicting the switch module connected by a cable to the
remote switch module at the determined connector port. In
another embodiment, the determined connector port may be
used to verify that the switch modules have been cabled, for
example, in a redundant manner. In other embodiments, the
switch module 250 may provide the determined connector
port to a cabling utility, which may be configured to respon-
sively generate instructions to physical cable the switch mod-
ules.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

While the foregoing is directed to embodiments of the
present disclosure, other and further embodiments of the

US 9,203,699 B2

15

present disclosure may be devised without departing from the
basic scope thereof, and the scope thereof is determined by
the claims that follow.

What is claimed is:

1. A computer program product for verifying cabling of a
distributed network switch, the computer program product
comprising:

a non-transitory computer-readable storage medium hav-
ing computer-readable program code embodied there-
with, the computer-readable program code comprising:

computer-readable program code, executable by a proces-
sor, configured to detect that a physical connection has
been made from a first switch module to a second switch
module, wherein the physical connection comprises a
plurality of links including a first link, wherein the first
link connects a first sub-switch element of a first plural-
ity of sub-switch elements within the first switch module
to a second sub-switch element of a second plurality of
sub-switch elements within the second switch module;

computer-readable program code configured to determine
a link identifier associated with the first link based on a
first port identifier of the first sub-switch element and on
a second port identifier of the second sub-switch ele-
ment;

computer-readable program code configured to retrieve,
from a memory of the second switch module, informa-
tion associated the second switch module;

computer-readable program code configured to retrieve a
physical topology associated with the second switch
module from a catalog of switch modules based on the
retrieved information; and

computer-readable program code configured to determine,
by execution of a processing element in the first switch
module, a connector port of the second switch module
associated with the physical connection based on the
physical topology and on the link identifier.

2. The computer program product of claim 1, wherein the
link identifier associated with the first link comprises an out-
bound link identifier set to the first port identifier and an
inbound link identifier set to the second port identifier.

3. The computer program product of claim 1, wherein the
retrieved information associated with the second switch mod-
ule comprises a model number identifying a type of the sec-
ond switch module.

4. The computer program product of claim 1, wherein the
computer-readable program code configured to determine the
connector port of the second switch module associated with
the physical connection based on the physical topology and
on the link identifier further comprises:

computer-readable program code configured to determine
an inbound portion of the link identifier matches a port
identifier specified by the physical topology.

5. The computer program product of claim 1, wherein the
physical topology associated with the second switch module
specifies the second port identifier for the second sub-switch
element is wired to the connector port.

6. The computer program product of claim 1, wherein the
computer-readable program code configured to retrieve infor-
mation associated the second switch module further com-
prises:

computer-readable program code configured to transmit a
management packet to the second switch module,
wherein the management packet comprises a read
instruction from a register in the memory of the second
switch module.

7. The computer program product of claim 1, further com-

prising

5

10

15

20

25

30

35

40

45

50

55

60

65

16

computer-readable program code configured to, respon-
sive to detecting that the physical connection has been
made from the first switch module to the second switch
module, enable flow of link-layer data over the first link
and disable flow of end user layer data over the first link.

8. A switch module comprising:

a first connector port coupled to a first plurality of sub-
switch elements;

a computer processor;

a memory comprising a catalog of switch modules and
storing management firmware, which, when executed
on the computer processor, performs an operation com-
prising:
detecting that a physical connection has been made from

the switch module to a remote switch module at the
first connector port, wherein the physical connection
comprises a plurality of links including a first link,
wherein the first link connects a first sub-switch ele-
ment of the first plurality of sub-switch elements to a
second sub-switch element of a second plurality of
sub-switch elements within the remote switch mod-
ule;

determining a link identifier associated with the first link
based on a first port identifier of the first sub-switch
element and on a second port identifier of the second
sub-switch element;

retrieving, from a memory of the remote switch module,
information associated the remote switch module;

retrieving a physical topology associated with the
remote switch module from the catalog of switch
modules based on the retrieved information; and

determining, by execution of the computer processor, a
second connector port of the remote switch module
associated with the physical connection based on the
physical topology and on the link identifier.

9. The switch module of claim 8, wherein the link identifier
associated with the first link comprises an outbound link
identifier set to the first port identifier and an inbound link
identifier set to the second port identifier.

10. The switch module of claim 8, wherein the retrieved
information associated with the second switch module com-
prises amodel number identifying a type of the remote switch
module.

11. The switch module of claim 8, wherein determining the
connector port of the remote switch module associated with
the physical connection based on the physical topology and
on the link identifier further comprises:

determining an inbound portion of the link identifier
matches a port identifier specified by the physical topol-
ogy.

12. The switch module of claim 8, wherein the physical
topology associated with the remote switch module specifies
the second port identifier for the second sub-switch element is
wired to the connector port.

13. The switch module of claim 8, wherein the operation
further comprises:

responsive to that detecting the physical connection has
been made from the switch module to the remote switch
module, enabling flow of link-layer data over the first
link and disabling flow of end user layer data over the
first link.

